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Radiation and scattering of water waves by rigid bodies 

By J. L. BLACK,? C. C.  ME1 AND M. C.  G. BRAY 
Department of Civil Engineering, Massachusetts Institute of Technology 

(Received 6 May 1970 and in revised form 24 August 1970) 

Schwinger’s variational formulation is applied to the radiation of surface waves 
due to small oscillation of bodies. By means of Haskind’s theorem the wave 
forces on a stationary body due to a plane incident wave are found using only 
far-field properties. Results for horizontal rectangular and vertical circular 
cylinders are presented. 

1. Introduction 
In this paper wewish to exploit further the variational formulationof Schwinger 

for water-wave problems. This technique, widely used for discontinuous wave 
guides (Collin 1960), has been successfully applied by Miles (1967), Kelly (1969), 

t Z  t Z  

(1) (11) 

FIGURE 1. Definition sketch. 

Mei & Black (1969) and Miles (1971) to water-wave scattering. In  all these 
studies the complex amplitude of the scattered wave in the far field is obtained 
accurately without striving for equal accuracy for the near field. We shall first 
show that, by formulating simultaneously the integral equations for the radiation 
and the scattering problems, the far-field amplitude of the radiated wave can 
also be calculated variationally. By means of a theorem of Haskind, the informa- 
tion obtained is then used to calculate the force and moment on a fixed body in 
a plane incident wave. 

t Present address: Chevron Oil Field Research Co., La Habra, California. 
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We only treat the following two types of rigid bodies in a water of finite dcpth h: 
( i )  an infinitely long, horizontal cylinder of rectangular cross-scction with half 
width a and (ii) a vertical cylinder of circular cross-section with radius a ;  the 
problems considered will be respectively two- and three-dimensional. The height 
of the body, which can be either protruding from the sea bottom (case I) or 
partially immersed in the free surface (case 11), is assumed to be less than the 
water depth (see figure 1). These geometries are of ocean-engineering interest 
as breakwaters, platforms and subsurface storage tanks, etc. 

2. Formulation of the radiation problems 
In  order to unify the analysis for two- and three-dimensional geometries, we 

use x to denote both the horizontal co-ordinate in a rectangular system ( x , z )  
for the former, and the radial co-ordinate in a cylindrical polar system (x, 0, x )  
for the latter. 

Consider a body oscillating in a plane (x, z for two-dimensional and B = 0 
and n for three-dimensional), with frequency w.  The velocity potential $ eiWt 

satisfies (Wehausen & Laitone 1960) 

3 ax - g$ = 0, = 0 (free surface), ( 2 . 2 )  

( 2 . 3 )  8 4  
- az = 0, z = - h (sea bottom), 

with g = d / g .  The potential must also represent an outgoing wave at  large 5 .  

Let = V ,  @ and Q, j = z ,  x, A, be the velocity amplitude of the forced heave, 
sway and roll about a horizontal axis through z = c, respectively. We must further 
require on the body that 

(2 .4a)b)  
a$/& = V+ Q2x (2-D) ( X  = -H) 

a$/& = (V+i2x)cosO (3-DJ (1x1 < a) ,  

on the top [bottom] for case I [11], and 

J ( I x '  = (2.5a,b) 
a$px = % + Q ( c - x )  (2-D) 

a$/ax = [%+Q(c-z)]cosO (3-D) ( Z E Z W ) ,  

where 2P' denotes the vertical range of the side wall (hence the superscript W ) .  
It is clear that, in the two-dimensional problems, the potential induced by the 

forced heave (sway and roll) is even (odd) in x; hence we decompose the potential 
as follows: 
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where the subscripts m = 0 , l  refer to even and odd modes respectively. I n  this 
way only the region x > 0 needs to  be considered. Similarly, the decomposition 

$(x, 0 , z )  = $ O b ,  2) + $I@, 2) COB f9 (2.7) 

can be made for the three-dimensional problems in view of the angular de- 
pendence of the boundary conditions (2 .4b)  and (2 .56) .  Here the subscripts m 
refer to the angular modes. For both classes the boundary conditions on the 
body are decomposed to: 

a+,/ax = U K ( z )  (x = a, Z E S J q ,  (2.8a) 

with UY(2)  = 0, uq" = % + Q(c - z ) ,  (2.8b) 

and a$,/az = v,(x) (0 < x < a, 2 = - H ) ,  ( 2 . 9 ~ )  

with v ,= -Y,  v ,=Qx.  (2.9b) 

Other conditions on $ apply also on $m (m = 0 , l ) .  
I n  problems of scattering by a fixed body, the formulation is quite similar; 

for details we refer to Mei & Black (1969) for the two-dimensional cases and to  
Miles & Gilbert (1968) for the three-dimensional cases. 

3. Reduction to integral equations 

Let the following symbols be introduced for various domains of x :  
We shall first transform the boundary-value problems t o  integral equations. 

(3.1) i 
- H  < x < 0 

-h  < x < -H  
(I), 

(11), 
3%": { 

x = 23 + 23"w: ( - h < 2 < 0). 

I n  terms of eigenfunctions, the potential can be expressed as 
W 

$m = C bmnfn(z )  $mn(x) (x > a, Z E ~ ) ,  (3.2) 

(3.3) 

n=O 
for the outer region and 

m 

n= 0 
= @E(x, z) + X Bmn&(Z)Ynzn(Z) (0 < x < a, Z E  s), 

for the inner region, which is distinguished by capital symbols. I n  the preceding 
equations, the sets {fn} and {Fn}, n = 0 , 1 , 2 ,  . . . , represent the vertical eigenfunc- 
tions which are orthonormal in x and 23 respectively. The functions $mn andYmn 
represent the horizontal eigensolutions with $mo being the propagating mode 
behaving as outgoing waves a t  large x and @mn(n L 1)  being the evanescent 
modes exponentially decaying a t  large x. Og are the particular solutions for the 
inner region, harmonic and satisfying (2.2) [(2.3)] for case I [11] and the inhomo- 
geneous condition at z = - H .  Reference is made to  the appendix for their explicit 
expressions. 

Matching the horizontal velocity at the surface x = a, the Fourier coefficients 
can be expressed in terms of the unknown a@.,/ax at x = a. Introducing 

(3.4) 
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and denoting (aa/ax)l,,, by a‘(a), we have in particular, 
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which is directly related to the amplitude of the radiated wave at  large x. 
Matching further the potentials a t  x = a, z E 8, an integral equation is obtained: 

9 n a K a  jz ~ C G , ( Z ~  C) K(C) = Yrn(Z) (26 3); ( 3 . 6 a )  

and ( 3 . 6 ~ )  

We note that the kernel G, is symmetric in z and <. The above integral equation 
replaces the original boundary-value problem for m = (0, I), case I and nz = 1, 
case 11. The heaving of a surface dock (m = 0, case 11) needs some care since 
‘$“&,(a) = 0. As can be easily shown, (3 .6a )  ought to be modified to 

/zd<Go(4C) W,(O = yo(z )+B, ,F,  (W, ( 3 . 6 4  

where G, is obtained from (3.6 b )  by deleting the term n = 0 from the second series. 
A further constraint from mass conservation, 

r r 

should be added to render the problem determinate (Garrett 1971). 
In order to achieve a stationary form for b,, (hence (W,,f,)), an adjoint 

integral equation with the same kernel and with f0 on the right-hand side is 
needed (Jones 1963, p. 270) .  Take the two-dimensional cases first. Form = (0, I ) ,  
this is provided by the (even, odd) scattering by the same body, now fixed, of 
two normally incident waves a t  equal amplitude and (same, opposite) phase.$ 
With slight modifications from the treatment of Mei & Black (1969), we obtain 
the governing integral equation for the corresponding horizontal velocity U& 
a t  x = a, z E 8: 

(3.71 

for m = 0 and 1 (case I) and m = 1 (case 11) where Cn, is some constant un- 
important for the present discussion and d, is the amplitude of the incident-wave 
potential, defined by q5i = d,f,(z) e c i k X .  

Similar to the discussions leading to ( 3 . 6 ~ )  and ( 3 . 6 d ) ,  for the even scattering of 
a surface dock (m = 0, case 11) we must replace (3 .7 )  by 

9,u: = c,d,fo+D,,F,, (3.9 a )  

uz) dz will be understood as the 

9 m u L  = j Z d < ~ m ( z l i ,  UL(C) = Crnd,fo(z), 

(3.8) 

t The range of integration for all inner-products (u, v} 

$ This fact was utilized by Levine (1958) in a related problem. 
interval in which both u and v are defined, e.g. 5Tw for (UK,f,} and 3 for ( U&,j,h}.  
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with the kernel redefined in the same way. The following additional constraint 
is also imposed 

u;(z) = 0 (11). (3.9b) 

The three-dimensional problems are treated similarly. In  polar co-ordinates 
the incident wave from 0 = 7r (same as (3.8)) is represented by: 

p = do fOe--ikxcosO = d f C em( - i)" Jm(kx) cos mB (eo = l , ~ ,  = 2; m = 1, 2, . . . ). 
(3.10) 

In  view of the above expansion, we may express the scattering potential 
@ = q5 - @ as a series of cos me. Each angular mode m = 0 ,1 ,2 ,3 ,  . . . leads to an 
integral equation of precisely the form of (3.7) with similar modifications for 
m = 0, case I1 (isotropic scattering by a surface dock). 

'irk 

4. Variational calculation for the far field 
As mentioned previously, the amplitude of the radiated wave at large x is 

determined by Sh = (Wm,fo). From parallel analysis it can be shown that the 
amplitude of the scattering potential at  large x is determined by S& = (U&, fa) 
(Miles & Gilbert 1968). By virtue of the symmetry of the integral operators9,, 
these functionals are stationary if expressed in the following forms of Schwinger: 

and 

In  general, S& is stationary with respect to independent variations of W, 
and UL (Jones 1963, p. 270); except for m = 0, case 11, the stationarity is sub- 
jected to the constraint of (3.6e) and (3.9b) with the coefficients Boo and Do, 
in (3.6d) and ( 3 . 9 ~ )  being the Lagrange multipliers (Miles 1971). It is interesting 
that while they are crucial when force calculations are made by direct integration 
of the pressure on the body (Garrett 1971)) these coefficients do not appear 
explicitly in the present variational formulation. The stationarity of S&, in the 
form (4.2), may be regarded as a special case of (4.1) by taking 7,  = f o ,  and 

We now apply the Rayleigh-Ritz procedure. Expressing W, and U& as N-term 
u;, = u;. 

truncated series of orthonormal functions (q}, 
N N 

i = O  j = O  
W,(Z) = z p&, U&(Z) = z v& (4.3) 

the conditions (a/ap,, a/avj) Sk = 0 (i,j = 0 ,1 ,2 ,  . . ., N), then lead to the following 
explicit result without having to solve for any coefficient p,i or vi (Collin 1960, 
p. 335): 

Sh = 

... Q i  ... ... soj ... 
P o  

... @y) ... , 14.4) 
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where gij = ($, YJ$), 4 = (4,2f0}7 Qj = (4, Y,>. 

For m = 0, case 11, a slight modification is needed, as the terms i = 0 a n d j  = 0 
must be omitted from ( 4 . 3 )  as required by ( 3 . 6 e )  and ( 3 . 9 b ) .  

With the amplitude of the potential thus found, the corresponding amplitude 
of the wave height A h  defined by 

rnay be inferred from the linearized Bernoulli equation 7 = - ( i w / g )  q5IS=,: 

(4.6a, b)  

[cf. ( A 3 a )  and (A4a)l .  
It may be shown that the average rate of energy flux due to oscillating bodies 

is proportional to  the square of the radiated wave amplitude in the far field, 
from which the damping coefficient, a quantity of engineering importance, can 
be obtained (Newman 1962). Because of the simple relationship we do not pursue 
the matter here. 

5. Forces and moment on a stationary body 
A theorem due to Haskind (see Newman 1962) enables one to calculate the 

wave forces by using only the potential of the incident wave and the far-field 
potential of the radiated wave generated by an oscillating body. Let $;.&t 

be the radiation potential corresponding to the oscillating mode j ( j  = x, x, A),  
normalized for unit velocity amplitude (i.e. 5 = 1). The hydrodynamic forces 
and moment due to a plane incident wave on a stationary body of the same 
geometry are given by: 

vertical force, 
horizontal force, 
moment about x = c, 

where C, is a vertical cylindrical control surface a t  large x. By singling out a 
particular mode of oscillation, the amplitude of the radiation potential (bm& 
can be easily obtained from b,,,. It then follows after simple calculations that 

nz = 0 : j  = z q. = 2pwk a, ~ (bmo)’ (per unit length) 5 
for unit length of the rectangular cylinder (Newman 1962), and 

Fj = 4( - i ) m p ~  d0(bmO)& (3-D) ( 5 . 2 b )  

for the circular cylinder. The coefficient d, is the amplitude of the incident-wave 
potential, as defined by (3.8) and (3.10). 
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6. Numerical results 
Radiated-wave amplitudes A; (magnitude and phase) have been calculated 

when the body executes only one mode of oscillation. Denoting the maximum 
body displacement by ( x , ,  x,, A,) = - (l/o) (Y, @, Q), we normalize A$ and define 
the phase as follows: 

FIGURE 2. Horizontal rectangular cylinder on bottom (h/H = 2). Radiatcd-wave amplitude 
(magnitude and phase) due to body oscillation, andwave forces due to scattering: ( a )  vertical, 
( b )  horizontal, (c) rotational about (z = 0, z = -h) .  For thin plate (a /H = 0) replace a by 
k - H  in equations (6.1) and (6.2). 

The vertical and horizontal forces and the moment about x = c are normalized 
with respect to a characteristic hydrostatic force due to the incident wave: 

where h, is the net height of the body, i.e. h - H for case I and H for case 11, and A 
is the incident wave amplitude A = - ( iw /g )  do fo(0).  

(6.1) and (6.2) 
The phase angles Sj and pi are simply related as may be shown from (4.6), 

8. = /3. ( j  = z , x , A )  (2-D); 

p,  = S$-$T, p z , h  = 8 z , A + $ ~  (3-D). 
3 3  

t See figure captions for exceptions. 
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Computational aspects are similar to those discussed in Mei & Black (1969). 
Sample results are shown in figures 2 (a) ,  (b), (c) for rectangular cylinders 
(2-D) and figures 3 (a) ,  (b ) ,  (c) for circular cylinders (3-D), all protruding 
from the sea bottom (case I). The vertical force is seen to approach the correct 
long-wave limit a t  kH -+ 0 or ka -+ 0, i.e. the additional hydrostatic force 
due to the free surface elevation F, = 2pgaA (2-D), or npga2A (3-D). We note 

- !:n 

.o" dn -2n 

i n  

0 -11 

0.4 

- g 0.2 
- 

0 

0.8 

- 0.6 

0.4 

0.2 

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 

IcH 

(b )  

I .o 
0.8 s 0.6 

0.4 

0.2 

- 

- 

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 

I .o 
0.8 s 0.6 

0.4 

0.2 

- 

- 

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 
kH 

(c) 

FIGURE 2 ( b ) ,  (c). For legend see previous page. 
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the occurrence of nodes where the complex radiation amplitude and the force 
coefficients change sign; the phase angles defined here therefore change by 7~ 
abruptly. We present the variation as continuous curves by using a dual co- 
ordinate system, i.e. read the ordinate on the left for solid curves and on the 
right for dashed curves. This change of phase is brought about by the interference 
due to contributions from various parts of the body. Figures 4 (a) ,  (b) ,  ( c )  are for a 

dn 1 t n  
- 

.ON 

n 
3 .  a lH=3  

.O 

- 2  

g 1  
0 

1 2 3 4 5 6 7 8 

0.6 - alH=2 

0.4 

0.2 

0 

- 
- 

I 3 4 5 6 7 t 

FIGURE 3. Vertical circular cylinder on bottom (h/H = 2). Radiated-wave a,mplitude (magni- 
tude and phase) due to body oscillation and wave forces due t o  scattering: ( a )  vertical, 
( b )  horizontal, ( c )  rotational about horizontal axis 0 = & +7r, z = - h. 
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horizontal rectangular cylinder in the free surface (case 11). We omit the corre- 
sponding results for the circular dock which has been recalculated independently 
by Garrett (1971) to rectify earlier errors of Miles & Gilbert (1968); suffice it to  
mention that for the same geometrical parameters the agreement of our results 
is excellent. Comparison with the limiting case of a cylinder extending the entire 
depth (i.e a sea wall in 2-D, or a pile in 3-D) for which exact formulas are known 

1 

- 

bw - 0.5 2 -  0 

1 2 3 4 5 6 7 8 

kU 

( c )  

FIGURE 3 (c). For legend see previous page. 

a/H= I, 3 

\\ - a/H=3 

FIGURE 4. Horizontal rectangular cylinder in free surface (h /H = 2). Radiated wave tlmpli- 
tude (magnitude and phase) due to body oscillation and wave forces due to scattering: 
( a )  vertical (8, = ka+m), ( b )  horizontal, (c) rotational about (z = 0, z = 0). For thin plate 
(a /H = 0) replace a by H in equations (6.1) and (6.2). 
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a/H=O -LL 1 

have also been made but not shown here. For case I1 the known limits are 
approached smoothly as H +- h. But for case I when the depth of the top H is 
reduced, interference intensifies so that the number of nodes increases; of course 
due to the very shallow depth over the top of the body, the deductions from a 
linearized theory must be received with caution. 

We also present the total scattering cross-section, defined in Miles & Gilbert 
(1968), for both bottom and surface cylinders of circular plan form, figures 5 (a )  

U 
.i! ' $77 .o" 

0 
1 

0 

2 

- 

- $ 1  

0 
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 

-+ n t= 
tf 4 $77 

< 
Lo 

0 
0.4 

n 

- < 0.2 
- 

0 
0.6 

- 0.4 

0.2 

0 
0.4 0.8 1.2 16 2.0 2.4 2.8 3.2 3 6  4.0 

XI 

kH 

(4 
FIGURE 4 ( b ) ,  (c) .  For legend see previous page. 
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and ( b ) ;  for the latter cwe the original results of Miles & Gilbert were in error 
(Miles 1971). 

For further details and more extensive numerical results reference is made to 
Black & Mei (1970). 

0 1 2 3 4 5 6 
ka 

(4 

" 
1 2 3 4 5 6 

ka 

( b )  

FIGURE 5. Total scattering cross-section ofvertical circular cylinder: ( a )  on bottom, h/FI = 2; 
( b )  in free surface. R/h = 3 values of H/h:  (i), 0; (ii), Q; (iii), 2; (iv), +; (v), 1.  

In revising an earlier draft of this paper, we were priviledged to have had ex- 
tensive and enlightening discussions with Dr C. J. R. Garrett and Prof. J. W. 
Miles. This research was sponsored largely by the Fluid Dynamics Branch, 
Office of Naval Research, U.S. Navy, and in part also by the U.S. National 
Science Foundation. 
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Appendix. Details of particular and eigensolutions 

Miles & Gilbert 1968; Mei & Black 1969). 
These solutions can all be obtained by separation of variables (see Miles 1967; 

Vertical eigenfunctions 
The outer region: x > a, z E X .  

where Ic, = i k ;  k ,  k,  (n = 1,2,  . . .) are real and positive. 

from (A  1)  by just changing (f, Jc, h) to ( F ,  K ,  H ) ;  for case (11), they are 
The inner region (0 < x < a).  For case (I), expressions for F,(z) can be obtained 

4 2  cos K ,  ( z  + H )  Fo = (h-H)-*, F, = __ 
(h  - H)B ’ 

K ,  = n n / ( h - H )  (n = 1,2,3 ,... ). (A 2)  

Equations ( A  1 )  and ( A  2)  are valid for both two- and three-dimensional problems 
treated here. 

Horizontal eigenfunctions 
Two-dimensions. 

(A 3a-c) I $Tn,(x) = eck,(z-a), 
cos Kx 

x > a (m = 0,1; n = 0,1 ,2 ,  ...) 

Y.”,,,(x) = ( ) , Yon(x)  = coshK,x (g), 
sin Kx 

Ylo(x)  = ( ) , Y,,(x) = sinh K,x 

( O <  x <  a,  n =  1,2,3 ,... ). f 

@mo = Hg’(kx) ,  $,, = K,(k,z) (n = 1,2, ...), i 

Three-dimensions. 

where Hg’, K,, J, and I,  are standard Bessel functions. 
The particular solutions are 

V [ ( ~ + h ) ~ - ~ ~ l / 2 ( h - H )  (11), 

(I), i 
V ( z  + ( l / @ )  

@ D B =  { 
@? = Qx(z+ ( l / a ) )  (I), 

for both two- and three-dimensions, and 

I @.ip = Q x [ ( x  + h)2 - 3x2]/2(h - H )  

@.ip = Qx[ (x  + h)’- i x 2 ] / 2 ( h  - H )  
(2-D), 

(3-D), 
for case 11. 

(A 5a-c) 
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